Risico-analyse ggo’s

Het staat buiten kijf dat gg-gewassen van alle voedingsgewassen met een enorme voorsprong de meest geteste en geanalyseerde gewassen ooit zijn. Het is veelzeggend dat tegenstanders van ggo’s en anti-ggo-lobbygroepen er wel in slagen keer op keer te verwijzen naar extreem gebrekkige wetenschap zoals bv. het “onderzoek” van Pusztai of de artikels van Séralini en tezelfdertijd volledig voorbij gaan aan de letterlijk honderden wetenschappelijke studies die de veiligheid van ggo’s onderschrijven. Mensen en groeperingen die beweren dat er zo goed als geen (onafhankelijk) onderzoek naar de risico’s en de veiligheid van ggo’s bestaat, bewijzen vooral dat ze niet op de hoogte zijn (al dan niet moedwillig) van deze wetenschap en hun anti-ggo agenda liever baseren op een miniem aantal cherry-picked en gebrekkige wetenschappelijke artikels. Het feit dat deze honderden studies niet stroken met de angstverhalen die ze zo graag verspreiden, zit er misschien ook wel voor iets tussen.

Biofortified GENetic Engineering Risk Atlas (GENERA)

In de wetenschappelijke literatuur vind je ondertussen 600 studies die de algemene veiligheid en nutritionele waarde van ggo’s bespreken. De meeste van die studies bestaan uit een vergelijkende analyse tussen het ggo-gewas enerzijds en zijn niet-ggo tegenhanger.

In tegenstelling tot bij ggo-gewassen bestaat er echter bijzonder weinig onderzoek in de wetenschappelijke literatuur naar de veiligheid van klassiek veredelde gewassen en dus niet-transgene gewassen. Dit klinkt nogal contradictorisch, zeker omdat men weet dat klassieke veredeling weldegelijk gevaren inhoudt zoals bv. bij aardappelen of selder en bij de introductie van nieuwe gewassen zoals bv. bij kiwi en sterfruit.

Ongeveer 33% van alle onderzoeken in de GENERA lijst zijn met onafhankelijke fondsen tot stand gekomen. Deze studies worden bijgehouden op een aparte pagina. Gemiddeld om de 2 weken komt er een nieuwe studie bij.

David E. Tribe

Ook David E. Tribe houdt op zijn blog gmopundit verschillende lijstjes van wetenschappelijke risico-analyse studies bij. Ondertussen verzamelde hij reeds meer als 440 peer-reviewed studies uit de wetenschappelijke literatuur die de algemene veiligheid van deze gewassen documenteren en de nutritionele waarde ervan onderzoeken. Ongeveer 30% daarvan zijn op volledige onafhankelijke basis tot stand gekomen, zowel qua betrokkenen als qua fondsen. Die laatste link is in die zin wat achterhaald dat ze dateert van de tijd dat de volledige lijst amper 270 artikels bevatte, waardoor de onafhankelijke lijst maar 78 studies groot is. Sindsdien zijn er natuurlijk nog heel wat onafhankelijke studies bijgekomen, die in de volledige lijst (440+) opgenomen zijn. Mensen die nog steeds geloven dat enkel de grote bedrijven de veiligheidsanalyses uitvoeren, vinden hier tientallen onafhankelijke studies die gg-voedsel testen.

Enkele grote/belangrijke studies

(Inter) Nationale wetenschappelijke instellingen en Internationale organisaties

De onderstaande (niet volledige) lijst bevat instellingen die allen na wetenschappelijk onderzoek de intrinsieke veiligheid van ggo’s voor mens en milieu onderschrijven en concluderen dat de techniek op zich geen enkel inherent risico met zich meebrengt.

Nutrition Reviews 2009 Vol 67 (1)17-20

Animal feeding trials

Mensen die nog steeds wensen te geloven/trachten te verspreiden dat er zo goed als geen (multi-generatie) voedingsproeven bij dieren bestaan, kunnen misschien al eens starten met het kijken naar onderstaand lijstje van onafhankelijke en peer-reviewed studies. Totaal niet volledig, maar toch al een mooi begin.

Ash J, Novak C, Scheideler SE (2003) The fate of genetically modified protein from Roundup Ready Soybeans in laying hens. Journal of Applied Poultry Research 12:242-245

Aulrich K, Bohme H, Daenicke R, Halle I, Flachowsky G (2001) Genetically modified feeds in animal nutrition 1st communication: Bacillus thuringiensis (Bt) corn in poultry, pig and ruminant nutrition. Archives of Animal Nutrition-Archiv fur Tierernahrung 54:183-195

Barriere Y, Verite R, Brunschwig P, Surault F, Emile JC (2001) Feeding value of corn silage estimated with sheep and dairy cows is not altered by genetic incorporation of Bt176 resistance to Ostrinia nubilalis. Journal of Dairy Science 84:1863-1871

Batista R, Martins I, Jeno P, Ricardo CP, Oliveira MM. (2007) A proteomic study to identify soya allergens–the human response to transgenic versus non-transgenic soya samples. Int Arch Allergy Immunol. 2007;144(1):29-38.

Batista, R., Nunes, B., Carmo, M., Cardoso, C. et al., Lack of detectable allergenicity of transgenic maize and soya samples.(2005) J. Allergy Clin. Immunol. 2005, 116, 403–410.

Bohme H, Aulrich K, Daenicke R, Flachowsky G (2001) Genetically modified feeds in animal nutrition 2nd communication: Glufosinate tolerant sugar beets (roots and silage) and maize grains for ruminants and pigs. Archives of Animal Nutrition-Archiv fur Tierernahrung 54:197-207

Bondzio, A., Stumpff, F., Schoen, J., Martens, H., Einspanier, R., (2008) Impact of Bacillus thuringiensis Toxin Cry1Ab on rumen epithelial cells (REC) – a new in vitro model for safety assessment of recombinant food compounds, Food and Chemical Toxicology 46: 1976-1984

Brake DG, Thaler R, Evenson DP (2004) Evaluation of Bt (Bacillus thuringiensis) corn on mouse testicular development by dual parameter flow cytometry. Journal of Agricultural and Food Chemistry 52:2097-2102.

Brake, D.G., Evenson, D.P., 2004. A generational study of glyphosate tolerant soybeans on mouse fetal, postnatal, pubertal and adult testicular development. Food Chem. Toxicol. 42, 29–36.

Chambers, P.A., Duggan, P.S., Heritage, J., Forbes, J.M. (2000). The fate of antibiotic resistance marker genes in transgenic plant feed material fed to chickens. J. Antimicrob. Chemother. 49, 161–164.

Chen ZL, Gu H, Li Y, Su Y, Wu P, Jiang Z, Ming X, Tian J, Pan N, Qu LJ. (2003) Safety assessment for genetically modified sweet pepper and tomato. Toxicology. 2003 Jun 30;188(2-3):297-307.

Chowdhury EH, Mikami O, Murata H, Sultana P, Shimada N, Yoshioka M, Guruge KS, Yamamoto S, Miyazaki S, Yamanaka N, Nakajima Y (2004) Fate of maize intrinsic and recombinant genes in calves fed genetically modified maize Bt11. Journal of Food Protection 67:365-370

Chowdhury EH, Shimada N, Murata H, Mikami O, Sultana P, Miyazaki S, Yoshioka M, Yamanaka N, Hirai N, Nakajima Y.(2003). Detection of Cry1Ab protein in gastrointestinal contents but not visceral organs of genetically modified Bt11-fed calves. Vet Hum Toxicol. 2003 Mar;45(2):72-5.

Chowdhury, E.H., Kuribara, H., Hino, A., Sultana, P., Mikami, O., Shimada, N., Guruge, K.S., Saito, M.,Nakayima, Y. (2003). Detection of corn intrinsic and DNA fragments and Cry1Ab protein in the gastrointestinal contents of pigs fed genetically modified corn Bt11. J. Anim. Sci. 81, 2546–2551.

Chrenkova M, Sommer A, Ceresnakova Z, Nitrayova S, Prostredna M (2002) Nutritional evaluation of genetically modified maize corn performed on rats. Archives of Animal Nutrition-Archiv fur Tierernahrung 56:229-235

Domon, Eiji, Hidenori Takagi, Sakiko Hirose, Koichi Sugita, Saori Kasahara, Hiroyasu Ebinuma, Fumio Takaiwa (2009) 26-Week Oral Safety Study in Macaques for Transgenic Rice Containing Major Human T-Cell Epitope Peptides from Japanese Cedar Pollen Allergens, Journal of Agricultural and Food Chemistry 2009 57 (12), 5633-5638

Einspanier R, Lutz B, Rief S, Berezina O, Zverlov V, Schwarz W, Mayer J (2004) Tracing residual recombinant feed molecules during digestion and rumen bacterial diversity in cattle fed transgene maize. European Food Research and Technology 218:269-273

El Sanhoty R, El-Rahman AA, Bogl KW (2004). Quality and safety evaluation of genetically modified potatoes spunta with Cry V gene: compositional analysis, determination of some toxins, antinutrients compounds and feeding study in rats. Nahrung. 48:13-8.

Flachowsky G, Chesson A, Aulrich K (2005) Animal nutrition with feeds from genetically modified plants. ARCHIVES OF ANIMAL NUTRITION 59: 1-40
Flachowsky, G., I. Halle, and K. Aulrich. (2005) Long term feeding of Bt-corn – a ten generation study with quails. Archives of Animal Nutrition 59(6):449-451.

Glencross B, Curnow J, Hawkins W, Kissil GWM, Peterson D (2003) Evaluation of the feed value of a transgenic strain of the narrow-leaf lupin (Lupinus angustifolius) in the diet of the marine fish, Pagrus auratus. Aquaculture Nutrition 9:197-206

Hashimoto W, Momma K, Yoon HJ, Ozawa S, Ohkawa Y, Ishige T, Kito M, Utsumi S, Murata K (1999) Safety assessment of transgenic potatoes with soybean glycinin by feeding studies in rats. Biosci Biotechnol Biochem. 63:1942-6.

Hemre GI, Sanden M, Bakke-Mckellep AM, Sagstad A, Krogdahl A (2005) Growth, feed utilization and health of Atlantic salmon Salmo salar L. fed genetically modified compared to non-modified commercial hybrid soybeans. Aquaculture Nutrition 11:157-167

Hohlweg, U., and Doerfler, W., 2001. On the fate of plant and other foreign genes upon the uptake in food or after intramuscular injection in mice. Mol. Genet. Genomics 265, 225–233.

Jaszczak K, Kruszewski M, Baranowski A, Parada R, Bartlomiejczyk T, Zimny J, Rosochacki S. (2008) Micronucleus test and comet assay on mice fed over five generations a diet containing genetically modified triticale. Journal of Animal and Feed Sciences year: 2008, vol: 17, number: 1, pages: 100-109

Jung HG, Sheaffer CC (2004) Influence of Bt transgenes on cell wall lignification and digestibility of maize stover for silage. Crop Science 44:1781-1789

Kılıc A, Akay M T (2008) A three generation study with genetically modified Bt corn in rats: Biochemical and histopathological investigation Food and Chemical Toxicology 46 (2008) 1164–1170

Kosieradzka I, Sawosz E, Pastuszewska B, Szwacka M, Malepszy S, Bielecki W, Czuminska K (2001) The effect of feeding diets with genetically modified cucumbers on the growth and health status of rats. Journal of Animal and Feed Sciences 10:7-12

Kosieradzka I, Sawosz E, Skomial J, Szopa J (2005) Transgenic potato tubers with overexpression of 14-3-3 protein in growing rat diets. 1. Selected hormone activities and liver function status. Journal of Animal and Feed Sciences 14:545-548

Kuehn CS, Linn JG, Johnson DG, Jung HG, Endres MI.(1999) Effect of feeding silages from corn hybrids selected for leafiness or grain to lactating dairy cattle. J Dairy Sci. 1999 Dec;82(12):2746-55.

Lutz B, Wiedemann S, Einspanier R, Mayer J, Albrecht C (2005) Degradation of Cry1Ab protein from genetically modified maize in the bovine gastrointestinal tract. Journal of Agricultural and Food Chemistry 53:1453-1456

Malatesta M, Boraldi F, Annovi G, Baldelli B, Battistelli S, Biggiogera M, Quaglino D.(2008) A long-term study on female mice fed on a genetically modified soybean: effects on liver ageing. Histochem Cell Biol. 130: 967-977

Malatesta, M., Tiberi, C., Baldelli, B., Battistelli, S., Manuali, E., Biggiogera, M., 2005. Reversibility of hepatocyte nuclear modifications in mice fed on genetically modified soybean. Eur. J. Histochem. 49, 237–242.

Mandal AB, Elangovan AV, Shrivastav AK, Johri AK, Kaur S, Johri TS. Comparison of broiler chicken performance when fed diets containing meals of Bollgard II hybrid cotton containing Cry-X gene (Cry1Ac and Cry2ab gene), parental line or commercial cotton. Br Poult Sci. 2004 Oct;45(5):657-63.

Mazza R, Soave M, Morlacchini M, Piva G, Marocco A (2005) Assessing the transfer of genetically modified DNA from feed to animal tissues. Transgenic Res. 2005 Oct;14(5):775-84.

Momma K, Hashimoto W, Yoon HJ, Ozawa S, Fukuda Y, Kawai S, Takaiwa F, Utsumi S, Murata K (2000) Safety assessment of rice genetically modified with soybean glycinin by feeding studies on rats. Biosci Biotechnol Biochem. 64:1881-6.

Palombo JD, DeMichele SJ, Liu JW, Bistrian BR, Huang YS. (2000) Comparison of growth and fatty acid metabolism in rats fed diets containing equal levels of gamma-linolenic acid from high gamma-linolenic acid canola oil or borage oil. Lipids. 35:975-81

Peng D, Chen S, Ruan L, Li L, Yu Z, Sun M. (2007) Safety assessment of transgenic Bacillus thuringiensis with VIP insecticidal protein gene by feeding studies. Food Chem Toxicol. 2007 Jul;45(7):1179-85.

Phipps RH, Deaville ER, Maddison BC (2003) Detection of transgenic and endogenous plant DNA in rumen fluid, duodenal digesta, milk, blood, and feces of lactating dairy cows. Journal of Dairy Science 86:4070-4078

Phipps RH, Humphries DJ (2002) Detection of transgenic DNA in milk from cows receiving herbicide tolerant (CP4EPSPS) soyabean meal. Livestock Production Science 74:269-273

Phipps RH, Jones AK, Tingey AP, Abeyasekera S (2005) Effect of corn silage from an herbicide-tolerant genetically modified variety on milk production and absence of transgenic DNA in milk. J Dairy Sci. (2005) Aug;88(8):2870-8.

Poulsen, M., Kroghsbo, S., Schrøder, M., Wilcks, A., Jacobsen, H., Miller, A., Frenzel, T., Danier, J., Rychlik, M., Shu, Q., Emami, K., Sudhakar, D., Gatehouse, A., Engel, K.-H., Knudsen, I., 2007b. A 90- day safety study in Wistar rats fed genetically modified rice expressing snowdrop lectin Galanthus nivalis (GNA). Food Chem. Toxicol. 45, 350–363.

Poulsen, M., Schrøder, M., Wilcks, A., Kroghsbo, S., Lindecrona, R.H., Miller, A., Frenzel, T., Danier, J., Rychlik, M., Shu, Q., Emami, K., Taylor, M., Gatehouse, A., Engel, K.-H., Knudsen, I., 2007. Safety testing of GM-rice expressing PHA-E lectin using a new animal test design. Food Chem. Toxicol. 45, 364–377.

Rehout V, Kadlec J, Citek J, et al. (2009) The influence of genetically modified Bt maize MON 810 in feed mixtures on slaughter, haematological and biochemical indices of broiler chickens. JOURNAL OF ANIMAL AND FEED SCIENCES 18: 490-498
Reuter T, Aulrich K (2003) Investigations on genetically modified maize (Bt-maize) in pig nutrition: fate of feed-ingested foreign DNA in pig bodies. European Food Research and Technology 216:185-192

Reuter T, Aulrich K, Berk A (2002) Investigations on genetically modified maize (Bt-maize) in pig nutrition: Fattening performance and slaughtering results. Archives of Animal Nutrition-Archiv fur Tierernahrung 56:319-326

Reuter T, Aulrich K, Berk A, Flachowsky G (2002) Investigations on genetically modified maize (Bt-maize) in pig nutrition: Chemical composition and nutritional evaluation. Archives of Animal Nutrition-Archiv fur Tierernahrung 56:23-31

Rhee, G.S., Cho, D.H., Won, Y.H., Seok, J.H., Kim, S.S., Kwack, S.J., Lee, R.D., Chae, S.Y., Kim, J.W., Lee, B.M., Park, K.L., Choi, K.S., 2005. Multigeneration reproductive and developmental toxicity study of bar gene inserted into genetically modified potato on rats. J. Toxicol. Environ. Health A 68, 2263–2276.

Rossi F, Morlacchini M, Fusconi G, Pietri A, Mazza R, Piva G (2005) Effect of Bt corn on broiler growth performance and fate of feed-derived DNA in the digestive tract. Poultry Science 84:1022-1030

Sagstad A, Sanden M, Haugland Ø, Hansen AC, Olsvik PA, Hemre GI.(2007) Evaluation of stress- and immune-response biomarkers in Atlantic salmon, Salmo salar L., fed different levels of genetically modified maize (Bt maize), compared with its near-isogenic parental line and a commercial suprex maize. J Fish Dis. 2007 Apr;30(4):201-12.

Sakamoto, Y; Tada, Y; Fukumori, N; Tayama, K; Ando, H; Takahashi, H; Kubo, Y; Nagasawa, A; Yano, N; Yuzawa, K; Ogata, A; Kamimura, H (2007) A 52-week feeding study of genetically modified soybeans in F344 rats Journal of the Food Hygeine Society of Japan, 48 (3): 41-50

Sanden M, Bruce IJ, Rahman MA, Hemre GI (2004) The fate of transgenic sequences present in genetically modified plant products in fish feed, investigating the survival of GM soybean DNA fragments during feeding trials in Atlantic salmon, Salmo salar L. Aquaculture 237:391-405

Schrøder, M., Poulsen, M., Wilcks, A., Kroghsbo, S., Miller, A., Frenzel, T., Danier, J., Rychlik, M., Emami, K., Gatehouse, A., Shu, Q., Engel,K.-H., Altosaar, I., Knudsen, I., 2007. A 90-day safety study of genetically modified rice expressing Cry1Ab protein (Bacillus thuringiensis toxin) in Wistar rats. Food Chem. Toxicol. 45, 339–349.

Sinagawa-García SR, Rascón-Cruz Q, Valdez-Ortiz A, Medina-Godoy S, Escobar-Gutiérrez A, Paredes-López O.(2004) Safety assessment by in vitro digestibility and allergenicity of genetically modified maize with an amaranth 11S globulin. J Agric Food Chem. 2004 May 5;52(9):2709-14.

Spencer JD, Allee GL, Sauber TE. (2000) Growing-finishing performance and carcass characteristics of pigs fed normal and genetically modified low-phytate corn. J Anim Sci. 78:1529-36.

Teshima, R., Akiyama, H., Okunuki, H., Sakushima, J-i., Goda, Y., Onodera, H., Sawada, J-i., Toyoda, M. (2000). Effect of GM and Non-GM soybeans on the immune system of BN rats and B10A mice. J. Food Hyg. Soc. Jpn. 41, 188–193.

Tony MA, Butschke A, Broll H, Grohmann L, Zagon J, Halle I, Danicke S, Schauzu M, Hafez HM, Flachowsky G (2003) Safety assessment of Bt 176 maize in broiler nutrition: Degradation of maize-DNA and its metabolic fate. Archives of Animal Nutrition-Archiv fur Tierernahrung 57:235-252

Trabalza-Marinuccia, Massimo et. al. (2008) A three-year longitudinal study on the effects of a diet containing genetically modified Bt176 maize on the health status and performance of sheep. Livestock Science Volume 113, Issues 2-3, February 2008, Pages 178-190

Tudisco, R., Lombardi, P., Bovera, F., D’Angelo, D., Cutrignelli, M.I., Mastellone, V., Terzi, V., Avallone, L., Infascelli, F., 2006. Genetically modified soya bean in rabbit feeding: detection of DNA fragments and evaluation of metabolic effects by enzymatic analysis. Anim. Sci. 82: 193–199.

Vecchio, L., Cisterna, B., Malatesta, M., Martin, T.E., Biggiogera, M., 2004. Ultrastructural analysis of testes from mice fed on genetically modified soybean. Eur. J. Histochem. 48, 448–454.

Wiedemann, S., Gurtler, P., & Albrecht, C. (2007) Effect of feeding cows genetically modified maize on the bacterial community in the bovine rumen. Applied and Environmental Microbiology, 73, 24, pp 8012-8017

Wiedemann, S., Lutz, B., Kurtz, H., Schwarz, F.J., & Albrecht, C. (2006) In situ studies on the time-dependent degradation of recombinant corn DNA and protein in the bovine rumen. Journal of Animal Science, 84, 1, pp 135-144

Williams GM, Kroes R, Munro IC. (2000). Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31:117–165.

Zdunczyk Z, Frejnagel S, Fornal J, Flis M, Palacios MC, Flis B, Zagorski-Ostoja W (2005) Biological response of rat fed diets with high tuber content of conventionally bred and transgenic potato resistant to necrotic strain of potato virus (PVYN) Part I. Chemical composition of tubers and nutritional value of diets. Food Control 16:761-766

Zdunczyk Z, Juskiewicz J, Fornal J, Mazur-Gonkowska B, Koncicki A, Flis B, Zimnoch-Guzowska E, Zagorski-Ostoja W (2005) Biological response of rat fed diets with high tuber content of conventionally bred and transgenic potato resistant to necrotic strain of potato virus (PVYN). Part II. Caecal metabolism, serum enzymes and indices of non-specific defence of rats. Food Control 16:767-772

Zhu Y, Li D, Wang F, Yin J, Jin H (2004) Nutritional assessment and fate of DNA of soybean meal from Roundup Ready or conventional soybeans using rats. Archives of Animal Nutrition-Archiv 58, 295–310.

Chelsea, S., et al. Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: A literature review. Food Chem. Toxicol. (2011), doi:10.1016/j.fct.2011.11.048

Walsh MC, Buzoianu SG, Gardiner GE, Rea MC, Gelencsér E, et al. (2011) Fate of Transgenic DNA from Orally Administered Bt MON810 Maize and Effects on Immune Response and Growth in Pigs. PLoS ONE 6(11): e27177.

Maria C. Walsh, Stefan G. Buzoianu1, Gillian E. Gardiner, Mary C. Rea, R. Paul Ross, Joseph P. Cassidy and Peadar G. Lawlor. Effects of short-term feeding of Bt MON810 maize on growth performance, organ morphology and function in pigs. British Journal of Nutrition (2012), 107, 364–371