How to genetically modify a tomato and other things we eat

The production of genetically-modified (GM) foods remains a mystery to many.

Murray Ballard, a photographer, has visited the John Innes Centre – Europe’s largest independent research facility for the study of plant science and microbiology – with the aim of gaining a deeper understanding of genetic modification technology and its application in the development of crop plants.

The newspaper produced is divided into three scetions, each dealing with a different experiment.

From “How to genetically modify a tomato, and other things we eat” via John Innes Centre

De ogen van de patat

Alles op een hoop

Bijna niemand heeft een probleem met een genetisch gewijzigde bacterie die insuline aanmaakt. Maar in het GGO-debat worden alle genetisch gewijzigde planten als ongewenst beschouwd door tegenstanders. Er is geen plaats voor nuance. Anne Teresa De Keersmaeker maakt in De Standaard deze veelvoorkomende en veralgemenende claim: “Planten genetisch manipuleren en een GGO introduceren [in het milieu] is gevaarlijk voor onze planeet.” Dit kan maar op twee manieren mogelijk zijn: (a) alle methoden om een “vreemd” gen (transgen) in een plant te brengen zijn gevaarlijk of (b) elke “onnatuurlijke” wijziging aan het erfelijk materiaal van een plant is gevaarlijk. Beide mogelijkheden impliceren dat (de functie van) het transgen niet ter zake doet. Echter een realistische en genuanceerde visie op GMOs zou kunnen zijn: Niet alle GMOs zijn gevaarlijk of niet alle GMOs zijn ongevaarlijk. Het is de aard van het transgen en het gebruik van de GMO door de mens dat bepalend is voor de schadelijkheid ten opzichte van mens en milieu. Een extreem voorbeeld is dat een plant die het botulinum toxine (botox) aanmaakt uiteraard gevaarlijk zal zijn.

Ken je transgen

Wat is nu de aard van het aardappeltransgen in Wetteren? Het verwondert mij dat dit aspect nooit wordt aangehaald in het debat. Nochtans is het dus cruciaal te verstaan wat deze “resistentiegenen” juist zijn omdat dit bepalend is voor eventuele gevaarlijkheid. Doordat dit nooit wordt besproken ontstaat de gedachte dat onze kennis hieromtrent onvoldoende is en dat dit gewoon stukken DNA zijn die empirisch tot resistente planten leiden. Dankzij het wetenschappelijk onderzoek in de moleculaire biologie weten we echter duidelijk  wat de functie is van deze genen. Het is juist bij het “natuurlijk” veredelen van planten dat men de resistentie inkruist zonder te weten welke stukken DNA en dus welke functies geselecteerd worden. Bovendien worden bij het selectieproces genen mee geïntroduceerd die niets te maken hebben met de resistentie en (ook nu nog) een volledig onbekende functie hebben (zie Figuur). Indien de aard van het transgen de gevaarlijkheid bepaalt volgt hier uit dat veredeling gevaarlijker moet zijn dan genetische modificatie.

Kruisen vs GM -  (A) Het resistentiegen is aanwezig in de bruine variëteit welke gekruisd wordt met de in de landbouw gebruikte blauwe variëteit. Door vele jaren van terugkruisen met de blauwe varieteit kan met het gen inkruisen (B). Echter een gedeelte van het bruine genoom is "gelinkt" aan het transgen en is mee ingekruist eventueel samen met onbekende regio's die onbekende genen bevatten met onbekende functies.

Kruisen vs GM – (A) Het resistentiegen is aanwezig in de bruine variëteit welke gekruist wordt met de in de landbouw gebruikte blauwe variëteit. Door vele jaren van terugkruisen met de blauwe variëteit kan met het gen inkruisen (B). Echter een gedeelte van het bruine genoom is “gelinkt” aan het transgen en is mee ingekruist eventueel samen met onbekende regio’s die onbekende genen bevatten met onbekende functies.

Het immuunsysteem van planten.

Hoe planten zich verdedigen is een zeer interessant onderzoeksgebied. In een eerste verdedigingsmechanisme maakt de plant gebruik van sensoren (receptoren) aan de buitenkant van de plantencel die sterk geconserveerde structuren herkennen bij ziekteverwekkers zoals bv. het zweepstaartje van een bacterie. Het “LRR-gedeelte” van de sensor verschilt van receptor tot receptor en staat in voor de herkenning van de karakteristieke structuur van een ziekteverwekker. Wanneer herkend wordt er een verdedigingsmechanisme geactiveerd. Dit noemt met PAMP-triggered immunity (PTI).  Interessant weetje is dat u en ik op een zeer gelijkaardige manier met LRR-receptoren ziekteverwekkers herkennen, een geval van convergente evolutie.

Maar ziekteverwekkers zoals de aardappelziekte (Phytophthora) zijn geëvolueerd om deze barrière te omzeilen. Ziekteverwekkers die dat niet doen sterven natuurlijk uit. Ze injecteren met een moleculaire spuit tientallen eiwitten en andere moleculen (effectoren) in de plantencel die het eerste verdedigingsmechanisme uitschakelen. Planten evolueerden mee en maken nu ook intern LRR-receptoren aan die nu de effectoren herkennen in de cel in plaats van de ziekteverwekker buiten de cel (denk aan het zweepstaartje). Als een effector wordt herkend, lanceert de plant een tweede type verdediging dat de ziekteverwekker efficiënt uitschakelt. Dit noemt met Effector-triggered immunity (ETI).

Schematische voorstelling van het immuunsysteem van de aardappel. In het eerste geval herkent de aardappelcel Phytophtora dankzij receptoren (LRR) aan de buitenzijde van de cel. Hierdoor kan het een PTI-verdedigingsrespons opzetten en overleven. In het tweede geval injecteert Phytophtora effectoren in de cel die de PTI verhinderen. De aardappelziekte slaat dan toe. In het derde geval herkent de aardappelcel aan de hand van interne LRR receptoren een van de effectoren en start een ETI-verdedigingsmechanisme. Het zijn genen voor deze laatste interne LRR receptoren die in de Wetterse aardappelen werden ingebracht.

Schematische voorstelling van het immuunsysteem van de aardappel. In het eerste geval herkent de aardappelcel Phytophthora dankzij receptoren (LRR) aan de buitenzijde van de cel. Hierdoor kan het een PTI-verdedigingsrespons opzetten en overleven. In het tweede geval injecteert Phytophthora effectoren in de cel die de PTI verhinderen. De aardappelziekte slaat dan toe. In het derde geval herkent de aardappelcel aan de hand van interne LRR receptoren een van de effectoren en start een ETI-verdedigingsmechanisme. Het zijn genen voor deze laatste interne LRR receptoren die in de Wetterse aardappelen werden ingebracht.

 

Een evolutionaire wapenwedloop

Het gevolg is dat er een evolutionaire wapenwedloop is ontstaan tussen de ziekteverwekkers en de planten. De eersten komen steeds op de proppen met nieuwe types van effectoren en de planten reageren door hun receptoren aan te maken die de effectoren herkennen. Verschillende stammen van dezelfde ziekteverwekker maken een verschillend repertoire aan van deze effectoren. En ook in de natuurlijke populatie van een plant is er een al even verscheiden repertoire aan LRR-receptoren.

Als een bepaald aardappelras resistentie vertoont tegen een bepaalde ziekte is dat meestal omdat het een receptor aanmaakt die een effector van de ziekteverwekker herkent. Mensen hebben dan door te kruisen dit “resistentiegen” (R-gene) ingebracht in de variëteit die ze verbouwen. Dit is een proces dat zeer lang duurt. Bijvoorbeeld voor de “biologische” aardappel Bionica duurde het 46 jaar om 1 enkel R-gen in te kruisen. Welke andere genen mee ingekruist zijn – laat staan hun functie – is onbekend.

Biotechnologie

De R-genen zijn echter eenvoudig te herkennen door moleculair biologen. De meesten coderen voor deze LRR-receptoren en verschillen relatief weinig van elkaar. Door het genoom van de aardappel in kaart te brengen schat men het aantal R-genen op enkele duizenden per genoom. Het aantal in de populatie ligt nog een pak hoger uiteraard. Men kan door moleculaire technieken een R-gen isoleren en het inbrengen in de plant: de zogenoemde transformatie. Het is belangrijk om in te zien dat het verdedigingsmechanisme van de plant zelf wordt gebruikt om Phytophthora te bestrijden. Door de plant het juiste R-gen uit de populatie te geven help je enkel de patat zijn vijand te herkennen.

Doorbreken van resistentie

De aardappelplant moet dus maar één van de effectoren herkennen om zijn ETI verdedigingsmechanisme in te schakelen en immuun te zijn. Echter, wanneer een Phytophthora opduikt die deze effector niet meer heeft – maar nog steeds even ziekmakend is – dan is de plant ten dode opgeschreven. Natuurlijk is er in een monocultuur van aardappelen met exact hetzelfde repertoire aan R-genen een enorme druk op Phytophthora om die ene effector te verliezen of eventueel te vervangen door een andere uit de populatie. Vandaar dat verwacht wordt dat voor een resistente aardappel zoals Bionica de resistentie door 1 gen vlug zal worden doorbroken. De oplossing is om R-genen te “stacken”(stapelen) en ervoor te zorgen dat de effectoren van Phytophthora worden herkend door zo veel mogelijk R-genen en zo het doorbreken van resistentie onmogelijk te maken. Dit zal enkel mogelijk zijn met behulp van biotechnologie aangezien het inkruisen van 2 a 3 genen decennia zal duren.  Bovendien zal met veredelen andere kenmerken gewijzigd worden met onbekende resultaten op bv. smaak, kleur of resistentie tegen andere ziekten.

 

Bt Cotton, Question and answers, a book by K.R. Kranthi

Foreword

No question is so difficult to answer as that to which the answer is obvious’ –George Bernard Shaw.

The success story of Bt-cotton in India is obvious, but it has indeed become strangely, circumspect to affirmatively answer the ‘obviously easy to answer’ question -‘has Bt-cotton succeeded in India in combating the bollworm menace?’ The answer lies in the simple fact that farmers have endorsed the technology in a vast majority. If Bt-cotton would not have controlled bollworms, the technology would not have moved the distance it has today.

There may be a need for refinement and constant changes are always inbuilt into science. While we progress with advanced technologies for sustainable growth and prosperity, environment should always be uppermost in our minds. Questions must be asked and concerns will be raised, but, science must provide answers and solutions. Bio-safety concerns are paramount to all of us. Answers should be forthcoming from good robust scientific experiments. We need not shy away from moving forward to develop GM technologies in a manner that is profoundly acceptable to the ecology, environment and society. But, any new technology must be compared to the previously used technologies and evaluated for the trade-off benefits, checks and balances and economic gain of the farmers.

It is clear that there is hardly any technology that can be 100.0% safe to everything. Interestingly, Bt-cotton is one of the few technologies having the safest bio-safety profiles. It comes as an alternative to the previously used hazardous concoction of insecticide mixtures. The insecticides used on cotton were known to have ravaged ecology, disrupted the environment, played havoc with human and animal health, were toxic to honey bees, insect-parasitoids and predators, caused allergies and a myriad number of ill-effects. Bt-cotton removed that to a great extent. Strangely, this seems to have been less acknowledged by detractors of the Bt-cotton technology. It is true that insecticides are now being used for sap-sucking pest control on Bt cotton hybrids, but, as mentioned in this book, the increase is because of the susceptible hybrids and has nothing to do with Bt-technology. We cannot afford to move back towards the pesticide era. By all scientific standards, Bt GM Cotton technology is by far the most environment friendly technology available thus far. We must however develop varieties and hybrids that show comprehensive resistance to sucking pests through resistant germplasm sources and to bollworms through Bt genes. This is possible through good plant breeding efforts. Once this is done, it is for sure that insecticide usage will be substantially reduced.

Bt-cotton was the first of GM technologies to be introduced into India. It is beyond doubt that farmers preferred Bt-cotton instead of the hazardous insecticide-cocktails for bollworm control. It is true that because of huge investment potential, multinational companies had the edge to develop the technology more efficiently and at a faster pace, compared to many public sector institutions across the world. But, GM technologies are being developed now more easily than before, as the transformation technology itself has advanced tremendously. India cannot afford to lose the competitive edge in agriculture, in the international arena, by slowing down biotechnology applications in agriculture. While we move forward, it surely becomes everybody’s responsibility to use the best science based technologies available to the farmer after weighing out all concerns and consequences, but, we need to move forward to face future challenges of burgeoning food and clothing demands of the ever-increasing populace.

I congratulate Dr Kranthi for the good effort in bringing out all possible facets of the Bt-cotton technology, especially from the Indian perspective, in the form of questions and answers, which makes the book readable. I hope that this book will enable all stakeholders for better understanding so as to assist in proper assessment of the technology in as rationally a manner as possible.

The book is accessible in its entireness here.

Can Genetically Engineered Crops Cause Adverse Effects on Nontarget Organisms?

Various published studies analyzed effects of Bt maize on nontarget insects. Two well-known studies focused on monarch butterflies (1) and on black swallowtails (2). The first, a note to Nature in 1999, was a laboratory study in which monarch caterpillars were fed milkweed leaves dusted with loosely quantified amounts of pollen from a single Bt corn variety. In the second study in 2000, black swallowtail caterpillars were placed different distances from a cornfield planted with a Bt corn variety different from that used in the 1999 study; populations were studied for effects of Bt for seven days. In the first study more monarch caterpillars died when they ate leaves dusted with Bt corn pollen versus leaves dusted with conventional corn pollen. In the second study, no negative effects of Bt pollen were found on numbers of swallowtail caterpillars.

Het volledige artikel met referenties vind je hier.

Plant perfumes woo beneficial bugs

Scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have discovered that maize crops emit chemical signals which attract growth-promoting microbes to live amongst their roots. This is the first chemical signal that has been shown to attract beneficial bacteria to the maize root environment.

The study was led by Dr Andy Neal of Rothamsted Research in Hertfordshire and Dr Jurriaan Ton of the University of Sheffield’s Department of Animal and Plant Sciences. By deepening our understanding of how cereals interact with microorganisms in the soil their research aims to contribute to ongoing efforts to increase cereal yields sustainably to feed a growing world population.

This research could be particularly useful in the fight against soil-borne pests and diseases. By breeding plants that are better at recruiting disease suppressing and growth promoting bacteria scientists hope to reduce agricultural reliance on fertilisers and pesticides.

The research is published today (24 April 2012) in the open-access journal PLoS One.

Continue reading

Evidence of reduced arbuscular mycorrhizal fungal colonization in multiple lines of Bt maize

Premise of the study: Insect-resistant Bacillus thuringiensis (Bt) maize is widely cultivated, yet few studies have examined the interaction of symbiotic arbuscular mycorrhizal fungi (AMF) with different lines of Bt maize. As obligate symbionts, AMF may be sensitive to genetic changes within a plant host. Previous evaluations of the impact of Bt crops on AMF have been inconsistent, and because most studies were conducted under disparate experimental conditions, the results are difficult to compare.

Methods: We evaluate AMF colonization in nine Bt maize lines, differing in number and type of engineered trait, and five corresponding near-isogenic parental (P) base hybrids in greenhouse microcosms. Plants were grown in 50% local agricultural soil with low levels of fertilization, and AMF colonization was evaluated at 60 and 100 d. Nontarget effects of Bt cultivation on AMF colonization were tested in a subsequently planted crop, Glycine max, which was seeded into soil that had been pre- conditioned for 60 d with Bt or P maize.

Key results: We found that Bt maize had lower levels of AMF colonization in their roots than did the non-Bt parental lines. However, reductions in AMF colonization were not related to the expression of a particular Bt protein. There was no difference in AMF colonization in G. max grown in the Bt- or P-preconditioned soil.
Conclusions: These findings are the first demonstration of a reduction in AMF colonization in multiple Bt maize lines grown under the same experimental conditions and contribute to the growing body of knowledge examining the unanticipated effects of Bt crop cultivation on nontarget soil organisms.

Volledige artikel werd gepubliceerd in the American Journal of Botany.

GM TRIAL TO REDUCE AGROCHEMICALS

A field trial of GM potatoes is being planted this week(Norfolk) to test whether genes from wild relatives can successfully protect commercial potato varieties from late blight – the disease that caused the Irish potato famine – without the need to spray fungicides.

British farmers spray on average 15 times a year to protect against potato late blight.

“We have isolated genes from two different wild potato species that confer blight resistance,” said Professor Jonathan Jones from the Sainsbury Laboratory on Norwich Research Park. “Similar genes are found in all plants, and we are now testing whether these ones work in a field environment to protect a commercial potato variety, Desiree, against this destructive potato disease.”

Meer in het oorspronkelijke artikel en op de Q&A pagina.

Veldproef met bladluizen afwerende tarwe

Bladluizen zijn een belangrijke plaag in verschillende gewassen binnen de landbouw. Ze veroorzaken rechtstreekse schade door zich op de plant te voeden, maar belangrijker is dat ze tijdens dit proces ook virussen verspreiden. In Rothamsted, Groot-Brittannië, wordt deze zomer een veldproef gehouden  met een genetisch gemodificeerde tarwesoort die deze plaag op een duurzame manier tracht te bestrijden.

Bladluizen verspreiden bij gevaar een feromoon ((E)-β-farnesene (EBF)) dat soortgenoten waarschuwt en een teken is om die plaats te mijden. Natuurlijke vijanden van de bladluis, zoals parasitoïde wespen, hebben zich gedurende de evolutie aangepast aan dit proces en worden net aangetrokken door dit feromoon. Zij leggen op hun beurt eieren in de bladluizen, waarna de bladluizen sterven. Ook lieveheersbeestjes worden door dit feromoon aangetrokken.

Continue reading

Spinach genes beef up citrus trees’ resistance to greening

Spinach, that same green leafy vegetable used by Popeye to pump up also may help citrus trees resist greening disease, or huanglongbing.

Erik Mirkov, a Texas AgriLife Research plant pathologist in Weslaco has transferred two genes from spinach into citrus, apparently imparting greening resistance, according to a news release.

Volledige artikel lees je hier.